
Appendix: ChatGPT Sucks at Being a Testing Expert

By James Bach (in collaboration with Michael Bolton) V1.0, 8/4/23

On July 1st, 2023, Michael Bolton posted a critique1 of a LinkedIn poll about boundary testing. Soon after Jason Arbon made a long post2 on

LinkedIn seemingly disputing with Michael and attempting to showcase the use of ChatGPT to help a tester think better about testing.

When I say it’s a long post, I mean that 9,000 words of it are a 30-prompt dialog between Jason and ChatGPT which probably took him 20

minutes or so to produce.

In our opinion, that dialog is a great example of how bad ChatGPT is at thinking like a tester. But more disturbingly, it’s an example of how

some boosters of AI are behaving irresponsibly and promoting bullshit. Jason failed to offer any critical thinking or express any caution

about the mostly useless answers he was receiving from ChatGPT.

It’s not entirely surprising, because it turns out that carefully vetting a chatbot is a lot of work. Michael and I have spent at least forty

working hours doing the analysis that you see here. We not only wrote a short analysis of each of the 30 answers given by ChatGPT, but we

also ran our own parallel experiments with AI, the full results of which we will be posting separately. Our analysis runs to something close

to 5000 words. And what if some wag creates another 9,000 word monstrosity tomorrow and challenges us to repudiate that? We all have

better things to do than chase scammers around in circles. Still, we felt we should do this at least once to make our arguments as clear as

we can to the undecided.

Large language models may indeed be helpful to testers under the right circumstances and for the right kinds of problems. But it will take

a lot of sober testing by sober professionals to identify the right heuristics and skills for doing responsible testing with the help of ChatGPT

and similar tools. Because the amount of work needed to rebut the reckless claims of influencers of LinkedIn is hugely greater than the

energy needed to promote those claims in the first place, we must all be on our guard.

1 https://developsense.com/blog/2023/07/boundaries-unbounded
2 https://www.linkedin.com/pulse/testing-bolt-on-ai-jason-arbon

Our Process
Michael and I have been doing various informal experiments with ChatGPT since it first came out. During that process we have noticed a

variety of problems with it that we call its “syndromes” because they are chronic and appear to be endemic to large language models.

These syndromes include:

Incuriosity Avoids asking questions; does not seek clarification

Placation Immediately changes answer whenever any concern is shown about that answer.

Hallucination Invents facts; makes reckless assumptions.

Arrogance Confident assertion of an untrue statement; especially in the face of user
skepticism.

Incorrectness Provides answers that are demonstrably wrong in some way (e.g. counter to known
facts, math errors, using obsolete training data)

Capriciousness Cannot reliably give a consistent answer to a similar question in similar
circumstances.

Forgetfulness Appears not to remember its earlier output. Rarely refers to its earlier output.
Limited to data within token window.

Redundancy Needlessly repeats the same information within the same response or across
responses in the same conversation.

Incongruence Does not apply its own stated processes and advice to it's own actual process. For
instance, it may declare that it made a mistake, state a different process for fixing
the problem, then fail to perform that process and make the same mistake again or
commit a new mistake.

Negligence/Laziness Gives answers that have important omissions; fails to warn about nuances and
critical ambiguities.

Opacity Gives little guidance about the reasoning behind its answers; unable to elaborate
when challenged.

Unteachability Cannot be improved through discussion or debate.

Non-responsiveness Provides answers that may not answer the question posed in the prompt.

Blindness Cannot reason about diagrams and pictures, nor even accept them as input.

Vacuousness Provides text that communicates no useful information.

In working through Jason’s dialog, we assigned syndromes to the answers whenever we saw them exemplified. There is a certain amount

of subjectivity to that analysis, and it sometimes took a lot of discussion to come to agreement on the labels. At all times, we avoided

criticizing ChatGPT for behavior that we would have excused in a human testing expert.

We assigned quality levels to each answer, as well. Our levels were:

Poor An answer that is useless or dangerous; a clear waste of time; no significant
redeeming value. Professional equivalent to something mildly poisonous.

We graded 15 answers as poor3.

Poor+ An answer that has some value, but not enough to counteract the problems with it.
Professional equivalent to a sandwich after you’ve dropped it in the mud. Only
starving people would eat that, but probably won’t kill you.

We graded 7 answers as poor+.

Okay- An acceptable answer that has something wrong with it that you have to pick your
way around. Professional equivalent of a hair in your soup. Yuck.

We graded 4 answers as okay-.

Okay An acceptable answer. A testing expert might fairly give that answer in some
probable context.

We graded 3 answers as okay4.

N/A An answer that was not fully reviewable or pertinent to review We graded 2 answers as N/A.

The analysis below is written in my own authorial voice, but represents hours of real-time collaboration with Michael Bolton. We also had

some review from other colleagues, including Paul Szymkowiak, Steve Harland, and Wayne Roseberry.

This is one part of a larger effort to create reproducible experiments with LLMs that might help us systematically assess their capability to

help us do technical work, including testing.

3 One answer (prompt #1) that was grade as poor was also grade as okay, depending on context.
4 One answer (prompt #1) that was grade as okay was also grade as poor, depending on context.

Jason's Prompts ChatGPT Replies James’ Evaluation
(1) An input field takes the

year of birth between 1900 and

2004. The boundary values for

testing this field are? The

author can see how you vote.

A. 0,1900,2004,2005

B. 1900,2004

C. 1899,1900,2004,2005

D. 1899,1900,1901,2003,2004,2005

The boundary values for testing the input

field that takes the year of birth between

1900 and 2004 would be option B: 1900 and

2004. So the answer would be B. 1900,2004.

Rating: Poor/Okay (incuriosity, negligence, opacity)

ChatGPT’s answer is either terrible or acceptable depending on your goal.

If your goal is to guess what the writer of the question probably thinks is the

best option to choose, then ChatGPT’s answer is okay. Indeed, any of the

answers are defensible. If I had to put money on it, I’d go with C, but B is a

strong choice, too.

But if your goal is to get good advice about testing from a test expert—from

an entity qualified to give good advice about testing—this answer is poor.

A professional tester should not give straight answers to questions like this.

The only thing we know from the question is some of

the rumored boundaries of some otherwise unknown system. We know this

only in the context of the field itself and not how it behaves with other fields,

nor how it is implemented. From this information alone, we must suspend

our judgement.

The real system may surprise us. For instance, there may be a boundary at

1970 (because maybe the year, along with other elements are at some point

converted into a Unix epoch).

And we should be questioning "2004." That's an odd year to be choosing as a

boundary. 2040 might make more sense (to future proof the code). Even

better, the current year (which allows anyone’s actual birthdate to be

entered). Perhaps 2004 is a typo? When I first looked at this number, I didn’t

realize that 2004 is the latest birth year, in 2023, for someone who is at least

18 years old. Asking about significance would have revealed that to me. So,

perhaps the real limit should be the current year minus 19?

ChatGPT is designed to give answers based on popular text in its training

corpus. Since there is very little sophistication in the public discussion of

boundary testing and boundary value analysis, I'm not surprised that it would

give this simplistic answer. But an ideal answer would be one that satisfied

both goals: it could have given the “book” answer and then provided

additional commentary on the wrongness of all the options.

(2) You are an expert tester with

lots of experience, doing boundary

testing in software. Is that still

the right answer?

Apologies for the confusion. As an expert

tester, I should have provided a more thorough

answer. In boundary testing, we test the

boundaries and just beyond them. In this case,

the specified range for the year of birth is

between 1900 and 2004. Therefore, the correct

answer for the boundary values would be option

C: 1899, 1900, 2004, 2005. So the answer would

be C. 1899, 1900, 2004, 2005.

Rating: Poor (placation, negligence, capriciousness)

First, what? We are already in the realm of the absurd. Is the right way to use

ChatGPT to follow up every question by reciting the obvious and asking "Is

that still the right answer?” What does ChatGPT’s apology mean? Is it empty

rhetoric or something more than that? Not only do I not know, Jason also

doesn’t know. Nobody really knows.

My guess is that ChatGPT has taken this prompt to be an expression of

dissatisfaction. It has replied by immediately disclaiming its previous

answer, and choosing a different one. My dog will do this, too, when I’m

training her. She wants a treat so she will sit. If that doesn’t result in

satisfaction, she will run through every other behavior she can think of until

she gets the treat.

In a parallel experiment that we will be reporting in another post, Michael

Bolton and I asked ChatGPT to analyze a specification for completeness.

Then we asked it “What is wrong with your answer, if anything?” In 11 out

of 15 cases (73%), it disavowed its first answer. In the other four cases, it

reaffirmed its prior answer and then added to it.

The robot is still not reacting as an expert in testing should.

(3) You are also a follower of the

practices of the rapid software

testing (RST) methodologies. Can

you think of a better answer than

that listed here?

Certainly! In the context of rapid software

testing (RST) methodologies, an effective

approach to boundary testing involves

considering the decision points and risks

involved. In this case, the decision point is

the validation of the year of birth input

field.

Considering the specified range between 1900

and 2004, a better answer for the boundary

values in RST would be:

D. 1899, 1900, 1901, 2003, 2004, 2005

This option includes values just before and

after the specified range to ensure that the

application handles them correctly. By

including additional boundary values, we can

test for potential off-by-one errors or any

other issues that may arise due to rounding or

comparison logic.

So, the answer would be D. 1899, 1900, 1901,

2003, 2004, 2005.

Rating: Poor (capriciousness, opacity, hallucination, incuriosity)

Now it can think of an even better answer? How many prompts does Jason

need to do before he elicits an adequate answer?

It makes sense for ChatGPT to change its answer when it is given a different

question. In this case, ChatGPT is told that it is a follower of RST. Does its

new answer reflect a reasonable adjustment? No. If it were an expert in RST

it would have said words to the effect that “In this case, a practitioner of RST

would reject all these answers as inappropriately reified, irresponsible, and

unhelpful.”

I am a special expert in RST, since it is my own methodology. I do a 90-

minute segment in class just on the subject of boundary testing. Therefore, I

can tell you with some authority that this answer not only has nothing to do

with RST, but is actually something I ridicule in my class. I call this the

"boundary testing fairy tale." So, ChatGPT has hallucinated RST

methodology. Nothing in any writings I’ve done or I’m aware of have ever

mentioned the notion of “decision points.”

The fact is, ChatGPT’s training data couldn’t possibly have qualified it to

opine about RST. It should have responded that it is not qualified to answer

this question.

(4) Create your own new answer

based on your context

Based on my understanding and context,

considering the specified range between 1900

and 2004 for the year of birth input field, a

comprehensive answer for boundary testing

could be:

E. 1899, 1900, 1901, 1999, 2000, 2001, 2003,

2004, 2005

This option covers a wider range of boundary

values, including values just before, within,

and slightly beyond the specified range. It

includes early and late 20th-century dates,

as well as some dates in the 21st century.

This approach allows for more thorough

testing of edge cases, potential leap year

issues, and any other anomalies that may

arise based on the application’s logic.

Therefore, the answer would be E. 1899, 1900,

1901, 1999, 2000, 2001, 2003, 2004, 2005.

Rating: Poor+ (opacity, incuriosity, negligence)

This is a reckless prompt, since Jason can have no clue what ChatGPT

will think he means by “context.” Indeed, in its answer, ChatGPT did

not declare any context and shows no indication of making a context-

based answer. A prompt like this reminds us that ChatGPT, as bad as it

is, cannot perform even marginally if it is given a lame prompt. An

answer like this exemplifies the typical opacity of its “reasoning”

process, since we are given no clue about how this answer relates to

any notion of context.

If we excuse ChatGPT’s earlier answers as being hamstrung by the

inadequacy of the multiple choice format (I don’t excuse it, but pretend

I have lower standards) then we might now expect a full and insightful

answer from the robot. But we don’t get a full answer. Instead, it makes

a slight elaboration. This is not at all what we should expect from a

competent tester, let alone an expert. If we judge it as an expert, it is

behaving negligently.

One thing that is encouraging about this answer is that the bot has

identified a new plausible boundary around the year 2000. In competent

boundary testing, a tester is not limited to merely the boundaries that

have been explicitly documented.

(5) What critical questions

could you ask about the

context to generate a better

answer?

To generate a better answer, it would be

helpful to ask the following critical

questions about the context of the year of

birth input field:

Are there any specific business or regulatory

requirements related to the age eligibility

or range of birth years?

Is the input field strictly limited to

accepting numeric values or are other formats

allowed?

How does the application handle leap years or

February 29th for individuals born on those

dates?

Are there any known historical or cultural

factors that might impact the valid range of

birth years?

Are there any dependencies or interactions

with other fields or modules that could

influence the boundary values?

Are there any specific error messages or

validation rules defined for invalid input?

Is the validation of the year of birth

inclusive (e.g., including the upper and

lower boundaries) or exclusive?

By understanding the specific context and

requirements, we can refine the boundary

values and generate a more accurate and

effective answer for boundary testing.

Rating: Okay (incongruence)

This answer is also why I say that ChatGPT can be helpful in testing –

as long as you are not relying on it. These questions might help a tester

remember to consider something that they have overlooked up to now

This is not a bad answer to the question.

But this very answer casts a pall over the responses it gave earlier.

Questions like the ones ChatGPT is suggesting should have been asked

by ChatGPT itself, at the very start of this conversation. That's what an

expert would do. Here they appear because the user said certain magic

words. And you cannot assume that, having reeled off these questions,

ChatGPT will function (or will have functioned) as if it understands

their value.

ChatGPT is opaque; it appears to have secret needs and limitations.

When you write prompts for it, you somehow must guess what it might

not tell you or hasn’t yet told you. You can’t know how many times or

in how many ways you must ask a question in order to get a good

answer.

This is what we mean when we say that the bot is negligent (fails in its

duty as a “testing expert” to consider and report all the things that an

expert should), incurious (fails to ask potentially vital questions),

capricious (tends to give wildly different answers to similar prompts),

and incongruent (dispenses knowledge that it does not apply in its own

process).

Meanwhile, Jason seems not to have noticed the poor performance of

the robot. In fact, in his article, he offers no substantive analysis of its

answers. Leaving the reader to notice all that is problematic about its

answers. (This is what annoys me about AI boosters. They act like

parents watching their own children on stage, clapping at everything

the kids do, no matter how inane. Parents should behave that way, but

not responsible professionals.)

.

(6) If you could automate the

generation of as many useful

test input and output pairs,

what would you generate?

ChatGPT: If I were to automate the generation

of useful test input and output pairs for the

year of birth input field, I would generate a

variety of test cases that cover different

scenarios. Here are some examples:

Valid inputs within the specified range:

Year of birth: 1900

Year of birth: 1955

Year of birth: 2004

Invalid inputs just before and after the

specified range:

Year of birth: 1899

Year of birth: 2005

Inputs representing edge cases:

Year of birth: 1901 (just after the lower

boundary)

Year of birth: 2003 (just before the upper

boundary)

Inputs representing leap years:

Year of birth: 2000 (leap year)

Year of birth: 1904 (leap year)

Inputs representing different centuries:

Year of birth: 1800 (outside the specified

range)

Year of birth: 2100 (outside the specified

range)

Invalid inputs such as non-numeric or invalid

format:

Year of birth: “nineteen hundred”

Year of birth: “200X”

Boundary inputs with additional digits:

Year of birth: 19000

Year of birth: 20045

For each of these test inputs, the

corresponding expected outputs would depend

on the specific validation rules and error

messages defined in the system. The

automation could check if the input is

accepted as valid or rejected as invalid

based on the application’s behavior.

Automating the generation of these test input

and output pairs would help ensure

comprehensive coverage and assist in

identifying any issues or discrepancies in

the handling of different scenarios related

to the year of birth input field.

Rating: Poor+ (opacity, incuriosity, negligence,
incongruence, capriciousness)

Although this answer is a little better than poor, it's still pretty bad.

First, the prompt is ambiguous, because the phrase “as many” could

have been intended to mean “as many as possible” or “as many as

needed” or “as many as you have given so far.” A competent tester

would have asked for clarification or provided an interpretation of the

question before answering it.

In this answer, more cases were added compared to previous answers.

Why? What is the rhyme or reason for the additions? Jason mentioned

automation, but none of these cases have anything to do with

automation. He mentions “input and output pairs,” but again, that’s no

reason to add cases over and above the ones that were already provided.

Changing the test cases for no reason is an example of capriciousness.

There is a little more variety in the answers— the most yet. But notice

that nothing here is based on any answers to any of the interesting

questions that ChatGPT just told us it would need to do a better job.

Therefore this answer is incongruent with the previous answer.

"Automating the generation of these test input and output pairs would

help ensure comprehensive coverage..." This is marketing fluff that

adds nothing to the substance of the answer.

(7) Would you add any Test

cases based on the JavaScript

implementation of such a text

box? or the network call? Or

perhaps even the backend

database implementation?

Certainly! To further enhance the test

coverage and consider the implementation

aspects, here are additional test cases based

on the JavaScript implementation, network

calls, and the backend database

implementation:

JavaScript Implementation:

Test cases for handling JavaScript-based

validations:

Testing for any client-side restrictions on

input length, format, or allowed characters.

Verifying that the validation triggers

appropriately on blur or form submission.

Network Call:

Test cases related to network calls and API

interactions:

Validating the behavior when submitting the

year of birth to the server via an API call.

Checking for proper handling of success and

error responses from the server.

Testing edge cases where the server response

may affect the behavior of the frontend

application.

Backend Database Implementation:

Test cases related to the backend database

implementation:

Validating that the year of birth is properly

stored and retrieved from the database.

Testing the handling of any data constraints

or database-specific rules related to the

year of birth field.

Verifying the consistency of data across

different layers (frontend, backend,

database).

These additional test cases consider the

specific implementation aspects and help

ensure that the application behaves as

expected at various layers, including the

frontend JavaScript code, network

interactions, and backend database

operations.

Rating: Poor+ (opacity, incuriosity, negligence,
vacuousness, non-responsiveness)

If you are predisposed to seeing value in ChatGPT, you will be

impressed that this answer has some substance to it. I agree that there is

substance and that it could be helpful to review a list like this after you

have thought through your own testing. You might find an idea that you

missed.

What I’m struck by is how little substance is here. This is the

vacuousness problem that often afflicts large language models. Jason

asked for test cases. “Verifying the consistency of the data across

different layers” is a vague test idea, not a fully worked out test case.

Besides that, this is a non-responsive answer to the question that Jason

asked— because none of its answers are based on any implementation

details. When asked for test cases based on a “Javascript

implementation” no competent expert would give a straight answer

unless he knew how the product was implemented. The more

responsible answer would be: "Maybe. If you share with me the

specifics of those things in your product, I will try to give you

additional ideas. Can you provide source code or an API specification?"

Part of the problem is that ChatGPT is, by design, very limited in its

ability to engage in a real conversation. It is not designed to interview

users to discover what they mean by their prompts.

(8) Generate Test cases

using JavaScript for the

client-side testing

Certainly! Here are some test cases focusing on client-side

testing for the year of birth input field implemented in

JavaScript:

Valid input:

Enter a valid year within the specified range (e.g., 1990)

and ensure it is accepted as valid.

Verify that the input is not flagged as an error or

highlighted in red.

Invalid input:

Enter a year before the specified range (e.g., 1890) and

ensure it triggers an error or validation message.

Enter a year after the specified range (e.g., 2020) and

verify that it is flagged as an error.

Input format:

Test different input formats such as alphanumeric characters,

symbols, or special characters and verify that they are not

accepted.

Check if the input field restricts the input length to the

expected number of digits (e.g., four digits for a year).

Boundary values:

Enter the lowest possible year within the range (e.g., 1900)

and ensure it is accepted as valid.

Enter the highest possible year within the range (e.g., 2004)

and verify it is accepted as valid.

User interaction:

Test the behavior when the user tabs or clicks out of the

input field (blur event) and ensure any validation triggers

are appropriately activated.

Verify that any error messages or validation indicators are

displayed or hidden based on the input.

Error handling:

Check if the error message is displayed in a visually

prominent way, clearly indicating the reason for the

validation failure.

Test if the error message is correctly updated or removed

when the input is modified to a valid value.

Compatibility:

Test the year of birth input field across different browsers

(e.g., Chrome, Firefox, Safari) to ensure consistent behavior

and appearance.

Rating: Poor (opacity, hallucination, incuriosity,
negligence, vacuousness, non-responsiveness)

ChatGPT did not generate checks in JavaScript. Instead, it

merely remixed answers that it has given earlier (although,

capriciously, not exactly the same answers). Therefore, the

answer is non-responsive to the given prompt. It also is

doing some hallucination (e.g. “…highlighted in red”

assumes that color is used to indicate a problem in the

input). Once again it is opaque (where are these answers

coming from?). Once again it is not asking important

questions.

We are left with a half-baked answer. Now what?

We are seeing how Jason can get ChatGPT to produce

something. That something is definitely more than

nothing, in the sense that a fine meal dropped into the dirt

is still a meal. If you were starving, you would eat it. If

you are a completely incompetent tester, maybe you

would consider ChatGPT’s output, here, to be acceptable.

That is not a good thing.

This is an example of ChatGPT wasting our time.

Competent testers don’t need this kind of output, and

incompetent testers wouldn’t know what to do with it.

This is partly not the fault of ChatGPT. Jason has chosen

to ask it about a very simple problem. I’m guessing that

Jason’s intent is to demonstrate the bot by using this

simple problem. The demonstration is meant to suggest

the value it could bring to a real industrial testing problem.

But if that is his intent, we still have to look critically at its

answer—because all its faults will also be brought into a

real industrial testing problem.

(9) Generate the

JavaScript code for these

tests

// Test case 1: Valid input

const validYearInput = '1990';

// Ensure the input field accepts the valid year

// Assertion: No error or validation message should be displayed

if (validateYearOfBirth(validYearInput)) {

 console.log('Test case 1: Valid input - Passed');

} else {

 console.error('Test case 1: Valid input - Failed');

}

// Test case 2: Invalid input

const invalidYearInput = '1890';

// Ensure the input field flags the invalid year

// Assertion: An error or validation message should be displayed

if (!validateYearOfBirth(invalidYearInput)) {

 console.log('Test case 2: Invalid input - Passed');

} else {

 console.error('Test case 2: Invalid input - Failed');

}

// Test case 3: Input format

const invalidFormatInput = 'ABCD';

// Ensure the input field rejects invalid formats

// Assertion: An error or validation message should be displayed

if (!validateYearOfBirth(invalidFormatInput)) {

 console.log('Test case 3: Input format - Passed');

} else {

 console.error('Test case 3: Input format - Failed');

}

// Test case 4: Boundary values

const lowerBoundaryInput = '1900';

const upperBoundaryInput = '2004';

// Ensure the input field accepts the lower and upper boundary values

// Assertion: No error or validation message should be displayed

if (validateYearOfBirth(lowerBoundaryInput) &&

validateYearOfBirth(upperBoundaryInput)) {

 console.log('Test case 4: Boundary values - Passed');

} else {

 console.error('Test case 4: Boundary values - Failed');

}

// Test case 5: User interaction

const userInteractionInput = '2020';

// Trigger a blur event on the input field

// Ensure the validation message appears due to the out-of-range year

// Assertion: An error or validation message should be displayed

document.getElementById('yearOfBirthInput').value =

userInteractionInput;

document.getElementById('yearOfBirthInput').dispatchEvent(new

Event('blur'));

if (!validateYearOfBirth(userInteractionInput)) {

 console.log('Test case 5: User interaction - Passed');

} else {

 console.error('Test case 5: User interaction - Failed');

}

Rating: Poor (forgetfulness, hallucination,
incuriosity, negligence, vacuousness)

The code that was generated did NOT include all the ideas

that had been asked for or promised in previous answers.

Apparently, those have been forgotten or negligently

ignored. (ChatGPT frequently leaves things out of its

answers. You have to be alert for that at all times.)

Here are all the inconsistencies I found in the code that the

bot generated:

1. The comments for all the cases make claims

about the display of messages, but only check the

return value of the validation routine. The

presence or absence of error messages is never

checked.

2. In test case five, I don’t know the exact

significance of the dispatch of the “blur” event

with respect to the imagined behavior of the

product under test. ChatGPT doesn’t say what it

means, either, nor what I am supposed to do to

relate this to my real product. The case appears

merely to manipulate the on-screen field but does

nothing to check any changes to the DOM that

may have been associated with the value in the

field. (note: I am a programmer and I’ve written

apps in JavaScript)

3. In the previous answer, there was a case that

mentioned checking the number of digits

accepted by the field. It is missing from this code.

4. In the previous answer, a case was mentioned

that referred to error messages being presented in

a “visually prominent way” yet no corresponding

case or oracle logic or guidance is provided in

this code.

5. Test case 6 performs a slightly different action

but uses the same oracle and data as test case 2,

so it is essentially indistinguishable from it.

(continued on the next page…)

// Test case 6: Error handling

const modifiedValidInput = '1985';

// Ensure the error message is removed when a valid input is provided

after an invalid one

// Assertion: No error or validation message should be displayed

document.getElementById('yearOfBirthInput').value = invalidYearInput;

document.getElementById('yearOfBirthInput').dispatchEvent(new

Event('blur'));

document.getElementById('yearOfBirthInput').value =

modifiedValidInput;

if (validateYearOfBirth(modifiedValidInput)) {

 console.log('Test case 6: Error handling - Passed');

} else {

 console.error('Test case 6: Error handling - Failed');

}

// Test case 7: Compatibility

// Run these tests on different browsers to ensure consistent

behavior

console.log('Test case 7: Compatibility - Run on different

browsers');

// Function to validate the year of birth input

function validateYearOfBirth(yearInput) {

 const lowerBoundary = 1900;

 const upperBoundary = 2004;

 const year = parseInt(yearInput, 10);

 return year >= lowerBoundary && year <= upperBoundary;

}

Please note that this code assumes the presence of an HTML input

field with the id “yearOfBirthInput” for testing purposes. Also,

ensure to include additional tests as needed and adapt the code to

match your specific implementation.

The code itself will run. I tried it.

But, so what? This code vacuously creates a toy example

of a product under test. How can we apply this to our real

product if we wanted to do real testing?

ChatGPT assumes in this code that the field is a standard

HTML input field, rather than a graphical date picker.

Because of its various assumptions, most of which are

undeclared, it is not possible to drop this code into a file or

a browser snippet and simply run it.

Again, we are left with the question: Who is this answer

for? Who is helped? I might as well write my own code

from scratch.

(10) What test cases might

have you missed?

While the provided test cases cover various scenarios, there

may still be additional test cases that could be considered.

Here are a few examples of test cases that could be included:

Empty input:

Test the behavior when the year of birth input field is left

blank.

Ensure that an appropriate validation message is displayed to

prompt the user to provide a value.

Leading and trailing whitespace:

Test for the presence of leading or trailing whitespace in

the input field.

Verify that any extra whitespace is trimmed or handled

correctly.

Non-numeric input:

Test the behavior when non-numeric characters are entered in

the year of birth field (e.g., “abcd”).

Ensure that an error or validation message is displayed to

indicate that only numeric input is allowed.

Special cases or corner cases:

Test for any known special cases or corner cases specific to

the application or requirements.

For example, if there are any restrictions based on certain

birth years due to legal or policy considerations.

Localization and internationalization:

If the application supports different languages or regions,

test the year of birth input field with localized formats or

language-specific characters.

Verify that the validation and error messages are displayed

correctly in the respective language.

Cross-browser compatibility:

Test the year of birth input field on various browsers and

browser versions (e.g., Chrome, Firefox, Safari, Edge) to

ensure consistent behavior and compatibility.

Performance and stress testing:

If the application expects a large number of concurrent users

or high-volume input, perform performance and stress testing

to ensure that the year of birth input field performs

optimally and handles the expected load.

Remember, these are additional test case suggestions, and the

specific requirements and context of the application should

guide the selection and prioritization of test cases.

Rating: Okay- (redundancy, non-
responsiveness, incuriosity)

We should not need to prompt a "testing expert" to give us

this information— certainly not multiple times— after

each question we ask. This brings to mind the case

of Clever Hans, a horse famous for being able to count

and do simple math. It turns out that it was responding to

subtle cues provided by its owner. If getting a good

answer from ChatGPT means poking it with new prompts

until it gives a decent answer, then you can’t safely use

ChatGPT unless you are fully able to distinguish between

bad answers and good answers. (Nothing in Jason’s part of

this dialog tells us whether he recognizes that he’s

receiving half-baked answers from the bot. Nor does he

critique the answers in any way in the rest of his article.)

Notice another problem: two of the examples it uses are

not missing at all. They were given in the previous

answer. So, this answer is not completely responsive to the

question, and shows that ChatGPT will generate

unhelpfully redundant answers.

The substance of the answer is not terrible, IF we have

already thought through the problem ourselves and we are

using ChatGPT to offer ideas we might have overlooked.

We agree that ChatGPT can be used safely to sprinkle

some sugar over the top of your own analysis.

https://en.wikipedia.org/wiki/Clever_Hans

(11) [Prompt not included

in Jason's post, but

apparently he asked for

humorous cases.]

Certainly! Here are a few lighthearted and funny test cases

that could add some humor to the testing process:

Test case: Enter a futuristic year

Input: 3000

Assertion: The application responds with a message like, “Are

you sure you’re not a time traveler?”

Test case: Enter a fictional character’s birth year

Input: 1901 (for Superman’s birth year)

Assertion: The application responds with a message like,

“Congratulations, you’ve discovered Superman’s real birth

year!”

Test case: Enter a mythical creature’s birth year

Input: 1000 (for the birth year of a dragon)

Assertion: The application responds with a message like,

“Wow, you must be a dragon whisperer!”

Test case: Enter a year from a popular movie or TV show

Input: 1985 (for the year of Marty McFly’s time travel in

“Back to the Future”)

Assertion: The application responds with a message like,

“Great Scott! Looks like you’ve experienced time travel!”

Test case: Enter a future year of a sci-fi event

Input: 2200 (for the year of an imagined space exploration

mission)

Assertion: The application responds with a message like,

“Ready to boldly go where no one has gone before?”

Remember, while incorporating funny test cases can add a

touch of humor, it’s important to ensure they don’t

compromise the overall testing objectives or distract from

the critical aspects of testing the application

Rating: N/A

This is obviously not a serious answer to any question

about testing.

(12) Which test cases of

all the ones generated

above are most likely to

fail?

In terms of likelihood to fail, it can vary depending on the

specific implementation and requirements of the application.

However, here are a few test cases that could be more prone

to failure or uncover issues:

Test case: Invalid input

This test case checks for handling of invalid input, such as

a year outside the specified range (e.g., 1890) or an invalid

format. If the input validation is not implemented correctly,

it may fail to detect and reject invalid inputs, leading to

unexpected behavior or acceptance of incorrect data.

Test case: User interaction

This test case focuses on the behavior of the input field

when the user interacts with it, such as triggering

validation on blur or form submission. If the event handling

or validation logic is not properly implemented, it may fail

to trigger the necessary validation checks, leading to

incorrect acceptance or rejection of the input.

Test case: Compatibility

This test case tests the compatibility of the year of birth

input field across different browsers. Browser-specific

behaviors, inconsistencies in handling input types, or

JavaScript compatibility issues can potentially lead to

failures in this scenario.

Test case: Error handling

This test case examines how the application handles errors

and validation messages. If the error handling is not robust

or if the error messages are not displayed or cleared

correctly, it may result in failures, confusing error

messages, or improper handling of subsequent valid inputs.

It’s important to note that the likelihood of failure for

each test case also depends on the quality of implementation,

adherence to specifications, and robustness of the validation

and error handling mechanisms. Thorough testing and

continuous feedback can help identify and address any issues

that arise from these test cases.

Rating: Poor (incuriosity, forgetfulness,
vacuousness, negligence, non-responsiveness,
opacity)

This is not an answer to the question that was asked.

Although it may superficially appear that some sort of risk

analysis is being done, no information of any kind is

offered that will help us understand the likelihood of

failure. Instead, the bot is applying a simple pattern “If X

is not correct, Y could happen.” This can be said about

any of the suggested test cases. Why did it pick these?

Not only that, ChatGPT gives no indication that it has

considered or remembers the specifics of the cases it has

previously suggested. Instead, the robot treats us to a

vague rehash of a few ideas that have already been given.

Little information is given that would help us map the

ideas here to the actual cases given in previous answers.

It may be that this question has no good answer outside of

some context. But if no context is offered, a testing expert

would either ask for it or declare the necessary

assumptions.

(13) Which of these test

cases that are most likely

to fail, would be

considered most important

by the Business, and why?

Determining the importance of test cases from a business

perspective depends on the specific priorities and

requirements of the application. However, in many cases, the

following test cases are considered important due to their

impact on user experience, data integrity, and compliance:

Test case: Invalid input

Importance: The business would prioritize this test case as

it ensures that the application properly handles and rejects

invalid inputs. This helps maintain data integrity, prevent

incorrect data from being processed or stored, and avoids

potential legal or compliance issues.

Test case: User interaction

Importance: The business would value this test case as it

focuses on the user experience and proper handling of user

interactions. Ensuring that the application responds

appropriately to user actions, such as triggering validation

on blur or form submission, is crucial for providing a smooth

and intuitive user experience.

Test case: Error handling

Importance: The business would consider this test case

important to ensure proper error handling and validation

feedback to users. Clear and accurate error messages play a

significant role in helping users understand and correct

their input errors, enhancing the usability and overall

satisfaction of the application.

While the importance of test cases may vary depending on the

specific context and requirements, these test cases are

typically prioritized by the business due to their direct

impact on user experience, data integrity, compliance, and

overall quality of the application. It is essential for

businesses to align testing priorities with their goals, user

expectations, and regulatory requirements to ensure a

reliable and user-friendly product.

These test cases for JavaScript client-side testing will help

ensure that the year of birth input field behaves correctly,

provides proper validation feedback, and handles user

interactions appropriately.

Rating: Poor (incuriosity, vacuousness,
redundancy, negligence, opacity)

Although ChatGPT appears, at least, to address the

question of business importance, there is no indication it is

distinguishing between levels of importance. It isn’t

asking for the information it would need to evaluate the

situation. The result is a vacuous answer that rehashes

what it has already previously said.

An expert in testing would set up to give a competent

answer: First, by finding out about the business and the

product, and the context of deployment. Then, by

discussing the factors that should be considered when

evaluating the business importance of a particular test

activity or output check.

(14) Do you know of any

interesting or expensive

product failures due to

similar issues?

Yes, there have been several notable product failures caused

by issues related to input validation, user interaction, and

error handling. Here are a few examples:

Therac-25 Radiation Therapy Machine (1985–1987):

The Therac-25 was a radiation therapy machine used for cancer

treatment. It had a software bug that caused it to deliver

lethal doses of radiation to patients. The issue was related

to insufficient input validation and error handling, leading

to catastrophic consequences, including several patient

deaths.

Mars Climate Orbiter (1999):

The Mars Climate Orbiter was a NASA spacecraft that was

intended to study the Martian climate. The mission failed

because of a navigation error caused by a mismatch between

metric and imperial units in the software code. This failure

highlighted the importance of proper unit conversion and

input validation in engineering and space exploration.

Knight Capital Group Trading Loss (2012):

Knight Capital Group, a financial services firm, experienced

a significant trading loss of $460 million in just 45 minutes

due to a software glitch. The issue stemmed from an input

validation error that caused the deployment of faulty trading

software, leading to numerous erroneous trades and

substantial financial losses.

These examples serve as reminders of the potential

consequences when input validation, user interaction, and

error handling are not adequately addressed in software

development. They underscore the importance of rigorous

testing, adherence to best practices, and prioritizing

quality assurance measures to prevent costly failures and

ensure the reliability and safety of products and systems.

Rating: Okay- (non-responsiveness,
hallucination, negligence, vacuousness)

On careful review of these examples, ChatGPT appears to

be hallucinating:

- The Therac-25 incident was an error handling

problem, but not a problem with input validation.

- The Mars Climate Orbiter incident was an input

scaling problem induced by miscommunication

between different teams, but not an input

validation bug.

- The Knight Capital incident had nothing to do

with input validation. It was a server

configuration problem, exacerbated by the

repurposing of an existing data field.

We don’t know for sure if ChatGPT is hallucinating or

merely doing a very shallow analysis. The bottom line is

that you won’t be successful using these examples in an

argument or illustration if your audience has basic

googling skills.

(15) How much do you

charge to generate these

test cases so quickly?

As an AI language model, I don’t have a pricing structure or

charge for generating test cases or any other responses. I am

here to provide information, assistance, and generate

responses based on the input I receive. My purpose is to help

users by offering relevant and helpful information. If you

have any further questions or need assistance with anything

else, feel free to ask!

Rating: Poor (non-responsiveness, negligence,
opacity)

I suppose Jason meant this as a tongue-in-cheek question.

But the question has an answer, and for some reason

ChatGPT didn't provide it.

ChatGPT+ costs $20 a month, or else you can use the API,

as I do, which is a pay-as-you-go model. There are

specific, published rates for the service.

Furthermore, because ChatGPT is an opaque and

uncontrolled tool, to use it responsibly we may need to run

periodic tests on its output to detect drift in its behavior.

We cannot assume that OpenAI does any such testing,

since to test the bot in every professional domain is a

massive undertaking. But, if we want to run hundreds of

tests of ChatGPT to characterize or monitor its behavior

over time, that can get expensive, quickly:

- Usage fees add up

- It is time consuming (both in terms of running the

automation and analyzing the results)

- It requires expert human review of its results

Note that Jason produced about 9,000 words in this entire

dialog with ChatGPT. It has taken in excess of 40 hours

for Michael and me to carefully analyze this dialog—a

process that Jason appears not to have even attempted,

since he has noted no problems at all in the output. The

cost of tracking ChatGPT as it gains or loses capabilities

over time may be prohibitive.

(16) Any other Test cases

that might be missing?

Certainly! Here are a few additional test cases that could be

considered:

Test case: Leap year handling

Verify the behavior when entering a leap year (e.g., 2000) as

the year of birth.

Ensure that the application correctly handles the extra day

in February.

Test case: Localization of error messages

Test the localization of error messages in different

languages, if the application supports multiple languages.

Verify that error messages are displayed correctly and in the

expected language based on the user’s locale.

Test case: Cross-device compatibility

Test the year of birth input field on various devices, such

as smartphones, tablets, and different screen sizes.

Ensure that the input field is visually appealing, properly

aligned, and functional across different devices.

Test case: Data persistence and retrieval

Validate the persistence and retrieval of the year of birth

data when navigating away from the page or refreshing the

page.

Ensure that the entered value is retained and displayed

correctly upon returning to the page.

Test case: Negative numbers

Test the behavior when entering negative numbers as the year

of birth (e.g., -1990).

Verify that the application rejects negative values and

displays an appropriate error message.

Test case: Concurrent user interactions

Simulate concurrent user interactions by opening multiple

instances of the application or having multiple users

inputting their birth years simultaneously.

Verify that the application handles concurrent requests

gracefully, maintains data integrity, and avoids conflicts.

These additional test cases help cover various aspects such

as handling specific calendar situations, user experience on

different devices, data persistence, and the application’s

behavior in multilingual or concurrent scenarios.

Rating: Poor (redundancy, forgetfulness, non-
responsiveness, capriciousness)

The robot is not answering the question. Perhaps it has

forgotten what it previously offered?

In our analysis, two of these cases were not missing:

- Leap year handling (mentioned in answer to

prompts 4, 5, and 6)

- Localization of error messages (mentioned in

answer to prompt 10)

Three cases are out of scope because they have nothing to

do with boundary testing a field that only has a birth year:

- Ensure that the application handles the extra day

in February

- Data persistence and retrieval

- Concurrent user interactions

Only two out of seven ideas offered here are both missing

and relevant to the question.

This illustrates a big problem with using ChatGPT: it's

continuity of awareness across questions is weak, even

within its own 8000 token window. It has no memory at

all outside the token window.

Testers may assume that it remembers all things because it

seems to remember some things, some of the time.

(17) Using critical

thinking techniques, are

there any questionable

design choices given the

problem statement? Is

there anything awkward or

strange regarding the

design decision to use

2004 as an end date? Any

idea why this value

would’ve been chosen?

Using critical thinking techniques, there are a few potential

questionable design choices and aspects worth considering

regarding the decision to use 2004 as the end date for the

year of birth input field:

Data relevancy: Given that the current date is 2023, setting

the end date as 2004 might seem peculiar. It means that

anyone born between 2005 and 2023 would be unable to input

their birth year, which seems restrictive and potentially

excludes a significant portion of the target user base.

Age eligibility: If the purpose of the input field is to

determine age eligibility for a specific requirement (e.g.,

age-restricted content or services), setting the end date as

2004 could indicate a specific age threshold of 18 years old.

However, it’s important to assess whether this age

requirement aligns with the intended audience or user

demographics.

System compatibility: Another aspect to consider is whether

there are any specific technical or legacy system constraints

that led to the choice of 2004 as the end date. It could be

due to limitations in the underlying system or software

architecture, database schema, or compatibility with other

systems or components.

Without additional information, it is challenging to pinpoint

the exact rationale behind the decision to use 2004 as the

end date. However, it is worth examining the implications of

this design choice and assessing whether it aligns with the

intended purpose, user needs, and broader system

considerations.

Rating: Okay (negligence, incongruence,
opacity)

This answer is helpful, but why are we only now hearing

it? Why has this "testing expert" robot been silent about

this until specifically prompted? That is not the behavior

of an expert. It’s an indicator of past negligence in

answering Jason’s questions.

The bot is not giving us any information about the critical

thinking techniques it claims to have used, and it probably

has not used any such techniques, since we have no

evidence that ChatGPT’s process has anything to do with

its advice about process. (Instead, it works by turning a

mathematical crank on a statistical map of words. That’s

what a “large language model” is.)

It's probably parroting the term “critical thinking

techniques.” To test this I gave it the original boundary

testing poll question (prompt #1) and then prompt #17,

both with and without the words “using critical thinking

techniques.” ChatGPT replied with essentially the same

answer, both times.

(18) List specific test

cases to cover

international issues.

Certainly! Here are some specific test cases to cover

international issues related to the year of birth input

field:

Test case: Date format localization

Verify that the year of birth input field accommodates

different date formats used internationally (e.g.,

MM/DD/YYYY, DD/MM/YYYY).

Test the input field with various date formats to ensure it

handles and interprets them correctly.

Test case: Non-Gregorian calendars

Validate the year of birth input field’s compatibility with

non-Gregorian calendars such as the Hijri (Islamic) calendar

or the Chinese lunar calendar.

Enter birth years based on non-Gregorian calendars and ensure

the input field handles them appropriately.

Test case: Localized month and day names

Test the behavior of the year of birth input field when

different languages or locales are selected.

Verify that month and day names are displayed in the correct

language and format based on the selected locale.

Test case: Age eligibility calculation

Test the accuracy of age calculation based on the user’s

birth year and the legal age requirement in different

countries.

Verify that the application correctly determines age

eligibility based on international legal standards.

Test case: Numeric representation differences

Validate the input field’s handling of numeric

representations used in different regions, such as decimal

separators and digit grouping separators.

Enter birth years with various numeric representations (e.g.,

1,000 vs. 1.000) and ensure the input field interprets them

correctly.

Test case: Time zone considerations

Test the year of birth input field’s behavior when users from

different time zones input their birth years.

Verify that the application handles time zone differences

appropriately and accurately captures the user’s birth year.

These test cases aim to cover international issues related to

date formats, calendars, localization, legal age

requirements, numeric representations, and time zone

considerations. By testing these scenarios, you can ensure

that the year of birth input field functions properly and

accurately addresses international user needs and

expectations.

Rating: Okay- (non-responsiveness, negligence,
incorrectness, hallucination)

Internationalization or localization testing are two

different things. There are good resources out there I

would turn to, instead of ChatGPT, such as this page

at Microsoft. Use Google to find those resources.

ChatGPT appears not to be aware of the difference

between internationalization testing (which means testing

to evaluate the risk that a product will not be localizable)

and localization testing (which means testing to evaluate

the risk that a product does not work well for a specific

locale/language). When it suggests that we use “non-

Gregorian” dates regardless of whether we are operating

in a locale that supports such a calendar, that’s not a

runnable test.

Most of these ideas are irrelevant. For instance, there is no

“date format” for a birth year field; “age eligibility

calculation” has not been mentioned in the prompt and has

nothing to do with the original boundary testing problem;

time zones don’t apply to birth years.

What the bot has done is given us a bunch of general ideas

that don’t apply to the problem with which we came to it.

Meanwhile this claim is wrong: "By testing these

scenarios, you can ensure that the year of birth input field

functions properly and accurately addresses international

user needs and expectations." No no no. You don't ensure

that. Testing doesn't ensure anything, anyway, but the

testing suggested here is strictly sanity level. This is not

deep testing.

https://learn.microsoft.com/en-us/globalization/testing/internationalization-checklist

(19) List specific Test

cases for localization

issues

Certainly! Here are some specific test cases to cover

localization issues:

Test case: Language localization

Verify that the application supports multiple languages and

translations.

Test the year of birth input field with different language

settings to ensure the labels, prompts, and error messages

are properly localized.

Test case: Date format localization

Test the year of birth input field with different locale

settings to verify that it adapts to the localized date

format.

Check that the day, month, and year are displayed in the

expected order and with the appropriate separators (e.g., “/”

or “-”).

Test case: Month name localization

Ensure that the month names are correctly displayed based on

the selected locale.

Test the input field with different language settings and

verify that the month names are displayed in the

corresponding language.

Test case: Decimal and digit grouping separators

Verify that the year of birth input field handles decimal and

digit grouping separators according to the selected locale.

Test with locales that use commas or periods as decimal

separators and verify that input is accepted or rejected

accordingly.

Test case: Localized error messages

Test invalid inputs in different locales to ensure that the

error messages displayed are properly localized.

Verify that the error messages are clear, concise, and in the

expected language for each locale.

Test case: RTL (Right-to-Left) language support

Test the year of birth input field with RTL language settings

(e.g., Arabic, Hebrew) to ensure proper visual alignment and

handling of RTL text.

Test case: Currency symbol localization

Check that the currency symbol used in any monetary

representations related to the year of birth input field is

properly localized based on the selected locale.

These test cases aim to cover various aspects of

localization, including language support, date formats, month

names, separators, error messages, RTL language support, and

currency symbol localization. By thoroughly testing these

scenarios, you can ensure that the application provides a

seamless and localized experience for users across different

locales and language settings.

Rating: Okay- (forgetfulness, non-
responsiveness, negligence, redundancy,
capriciousness)

This mostly duplicates the previous answer. ChatGPT has

not distinguished between internationalization and

localization testing. It hasn’t asked any clarification

questions. It seems to be giving another version of the

same answer to Jason, although with apparently arbitrary

differences (this is what we are calling capriciousness). As

I stated above, there are better places to get this kind of

information if the purpose is to get a comprehensive list of

internationalization or localization test ideas.

A lot of this material is also irrelevant to boundary testing

of a birth year field. Perhaps it has forgotten that the topic

of this conversation is boundary testing.

Jason is engaging in a somewhat reckless kind of

prompting. He’s providing very little context or corrective

instructions to keep the bot on task and on topic. Thus,

ChatGPT may have wandered off the topic and no one

would know. Michael and I had a spirited debate about

whether the answer, here, indicates that ChatGPT has

forgotten the original topic or whether it is reasonably

following cues from Jason to expand the discussion

between boundary testing (conclusion: we can’t know).

This claim is wrong: "By thoroughly testing these

scenarios, you can ensure that the application provides a

seamless and localized experience for users across

different locales and language settings." No reason is

given for us to think that this list of ideas is necessary or

sufficient. ChatGPT is not a reliable provider of this kind

of information.

(20) List specific test

cases for any religious or

social context, specific

issues

When considering religious or social contexts, it’s important

to approach the topic with sensitivity and respect for

diverse beliefs and practices. Here are some general test

cases that can help address specific religious or social

considerations:

Test case: Religious calendar compatibility

Verify that the year of birth input field handles religious

calendars such as the Islamic Hijri calendar or the Jewish

Hebrew calendar.

Enter birth years based on specific religious calendars and

ensure the input field interprets and processes them

correctly.

Test case: Gender-neutral or inclusive options

If the application collects gender information alongside the

year of birth, test for gender-neutral or inclusive options

that respect diverse gender identities.

Verify that the input field provides appropriate choices and

handles the selection and display of gender identities

correctly.

Test case: Privacy and data protection

Ensure that the year of birth input field complies with

privacy regulations and protects sensitive personal

information.

Test for secure transmission, appropriate storage, and

adherence to data protection practices.

Test case: Age-related restrictions or exemptions

Validate that the application correctly handles age-related

restrictions or exemptions based on religious or social

contexts.

Test scenarios where specific age requirements or exceptions

apply, ensuring the input field accurately determines

eligibility.

Test case: Cultural or local practices

Consider specific cultural or local practices that might

impact the year of birth input field.

Test scenarios where cultural practices, traditions, or local

norms might influence the acceptance or rejection of certain

birth years.

Test case: Multicultural or international considerations

Test the input field’s ability to accommodate multicultural

or international contexts.

Verify that the application is inclusive, respectful, and

considerate of diverse cultural and religious backgrounds.

Remember, it is important to approach religious or social

contexts with cultural sensitivity, and these test cases

should be tailored to specific requirements, respecting the

values, beliefs, and practices of different individuals and

communities. Consultation with relevant stakeholders or

subject matter experts can help ensure appropriate and

respectful test coverage in these areas.

Rating: Poor+ (forgetfulness, placation, non-
responsiveness, negligence, redundancy)

This answer wanders far afield of the original topic. I can’t

tell if ChatGPT has forgotten about the original question

or not. However, when Michael and I ran experiments

using this prompt combined with the original boundary

testing question, we got more specific (though still not

helpful) answers.

This answer is not helpful. I don’t see how any of these

ideas have a practical application to test the boundary of a

birth year field.

I suspect this is an example of placation. ChatGPT will

produce text that looks superficially relevant. It produced

it in this case solely because Jason asked for it. This

further highlights the importance of thinking critically

about what you receive from a chatbot.

The only value I see from this response is that it is a brief

brainstorm on aspects of products that might, in some

context, be culturally or locally specific. That’s not what

Jason was asking for, however.

(21) South Korea just

changed their birthdate

definition to the day you

were born instead of

conceived. Any new test

cases that should be

generated given this?

Certainly! With the change in birthdate definition in South

Korea, where birthdate is now based on the day you were born

rather than conceived, it would be appropriate to update the

test cases to reflect this new requirement. Here are some

additional test cases that could be generated in light of

this change:

Test case: Birthdate calculation

Verify that the year of birth input field correctly

calculates the birthdate based on the day the individual was

born.

Enter birth years and ensure that the calculated birthdate

aligns with the actual date of birth.

Test case: Leap year considerations

Check the behavior when the birthdate falls on February 29th

in a leap year.

Ensure that the application handles the birthdate correctly,

accounting for leap years when calculating the age.

Test case: Display of birthdate

Validate that the birthdate is displayed accurately based on

the new definition.

Verify that the birthdate is presented consistently in the

desired format, reflecting the day the individual was born.

Test case: Age calculation

Verify that the age calculation accurately reflects the new

birthdate definition.

Test different birth years and compare the calculated age

against the actual age based on the day of birth.

Test case: Legal compliance

Ensure that the new birthdate definition complies with South

Korean legal requirements and regulations.

Test scenarios that involve age-restricted activities,

services, or legal obligations to ensure the birthdate is

correctly interpreted.

These additional test cases address the specific change in

birthdate definition in South Korea and ensure that the year

of birth input field aligns with the updated requirements. By

considering the day of birth instead of conception, these

test cases help validate the accuracy and compliance of the

application within the South Korean context.

Rating: Poor+ (non-responsiveness, negligence,
incorrectness, vacuousness)

This is an incorrect and vacuous answer. None of these

cases are necessary or relevant.

If South Korea were to change its protocol for specifying

birth dates, then that would be handled by updating the

birth dates in the system, not by changing any logic for

calculating or displaying age. So, there is no change in the

software and no special testing required.

(What has actually happened in South Korea is that there

is a new system for calculating age. The birth dates have

not changed at all. But all I’m concerned with, here, is

ChatGPT’s response to the prompt it is given.)

(22) Any specific Test

cases that Michael Bolton,

the software tester-

extraordinaire, would have

come up with? Or questions

he would’ve asked about

the product when a testing

or evaluating risk?

While I don’t have direct access to Michael Bolton’s thoughts

or specific test cases he would generate, I can provide

insights based on common approaches and principles followed

by software testers like Michael Bolton. Here are some

potential test cases and questions he might consider:

Test Cases:

Test case: Boundary testing with extreme values

Explore the behavior of the year of birth input field with

values close to the boundary years (1900 and 2004) to check

for any unexpected behavior or edge cases.

Test case: Input validation with special characters

Test the application’s response to input containing special

characters, such as “@” or “#”, to ensure that the input

field handles them appropriately.

Test case: Cross-browser compatibility and responsiveness

Verify that the year of birth input field functions properly

across different browsers and devices, considering factors

like responsiveness, layout, and usability.

Test case: Handling of concurrent user interactions

Simulate scenarios where multiple users input their birth

years simultaneously to assess how the application handles

concurrent requests and avoids data conflicts.

What are the potential risks associated with input validation

and error handling in the year of birth input field?

Understanding the risks can help identify potential

vulnerabilities, such as accepting invalid input or

displaying incorrect error messages.

How does the application handle data privacy and security

concerns related to collecting and storing birth year

information?

Assessing potential risks regarding data privacy and security

can help identify measures to protect sensitive information.

Are there any legal or compliance requirements specific to

age eligibility based on birth year, and how does the

application ensure compliance?

Evaluating the application’s adherence to legal and

compliance requirements is crucial, especially when it

involves age-related restrictions or obligations.

What impact could incorrect or inconsistent handling of leap

years have on the application’s calculations and age-related

functionality?

Identifying risks associated with leap year calculations can

help ensure accurate age calculation and adherence to

calendar rules.

These questions and potential test cases reflect Michael

Bolton’s emphasis on critical thinking, risk analysis, and

exploring different dimensions of testing to uncover

potential issues and improve the overall quality of the

software.

Rating: Poor (opacity, negligence, incorrectness,
redundancy, non-responsiveness)

This answer is not at all what Michael would say in in

answer to this question, so it is incorrect.

The opacity of this answer means we can’t know if

ChatGPT has any idea who Michael Bolton, the tester, is,

or what testers may think who are “like” Michael Bolton.

The bot, once again, negligently plunges into an answer

without understanding the context, which is not what

Michael Bolton does or recommends.

The non-responsive answer given does not much relate to

the original boundary testing question. Instead, it is a

rambling note about testing date fields. Almost everything

mentioned has already been given, above, so this is also an

example of ChatGPT’s penchant for redundant wheel

spinning.

(23) Any specific tests or

automation approaches that

Jason Arbon, software

tester, would have

specifically created that

are not in the list above?

While I don’t have direct knowledge of Jason Arbon’s specific

test cases or automation approaches, I can provide insights

based on common strategies and principles followed by

software testers like Jason Arbon. Here are some potential

tests and automation approaches he might consider:

Test case: Performance and scalability testing

Design tests to assess the performance and scalability of the

year of birth input field when handling a large number of

concurrent users or high-volume input.

Measure response times, resource utilization, and system

stability under different load conditions.

Test case: Usability and accessibility testing

Evaluate the year of birth input field for usability and

accessibility factors, ensuring that it conforms to

accessibility standards and provides an intuitive user

experience.

Conduct usability testing sessions with a diverse set of

users to gather feedback and improve the interface.

Test case: Error handling under exceptional conditions

Create tests to evaluate how the application handles

exceptional conditions, such as network disruptions, server

failures, or unexpected inputs during the year of birth

submission process.

Assess the application’s error recovery mechanisms and how it

gracefully handles such scenarios.

Automation approach: Robust input generation

Develop automated scripts that generate a wide range of test

inputs for the year of birth input field, covering various

valid and invalid scenarios.

Utilize techniques like fuzzing, randomization, and boundary

value analysis to ensure comprehensive coverage of input

variations.

Automation approach: Continuous integration and regression

testing

Implement automation for continuous integration and

regression testing, ensuring that the year of birth input

field functions correctly after each code change or system

update.

Set up a test suite that includes specific test cases and

assertions related to the year of birth input field to ensure

its ongoing integrity.

These approaches reflect Jason Arbon’s focus on performance,

usability, robustness, and efficient testing techniques. They

emphasize using automation to improve testing coverage and

efficiency while maintaining a high standard of quality

throughout the software development process.

Rating: N/A (non-responsiveness,
incongruence, redundancy)

I won’t give this an overall rating because only Jason

Arbon can say how this relates to his way of thinking

about testing. One of the problems I have with this whole

example from Jason is that he doesn’t not perform any

discernable analysis of it. He’s leaving that to each of us. I

can report that Michael and I have spent, between us,

roughly 40 hours analyzing this transcript. It’s not an easy

task to do it justice. And it is utterly reckless to merely

assume that the bot is giving you good answers.

There are, however, a few things we can say about this

answer:

ChatGPT explicitly disclaims knowing how Jason Arbon

would test, but then claims to know “testers like Jason

Arbon.” How is that possible? Providing an answer to this

specific question after saying it does not have enough

information is incongruent behavior.

The rest of its answer has little to do with the original poll

question, and some of it overlaps with the list given in the

previous answer.

(24) Michael Bolton wrote

the following article,

which describes his

thinking around this

testing question: This

post started as a LinkedIn

post, which got started as

a comment replying to this

poll: <article above>.

The article by Michael Bolton highlights the limitations of

reducing testing and risk to simplistic formulas. He

emphasizes the importance of considering actual product

behavior and investigating and revealing product and business

risks. Based on his perspective, here are some key points and

considerations he raises:

Boundaries can have multiple interpretations: Boundaries can

represent dividing points, categorization principles, or

viewports that present subsets of larger sets. It’s important

to understand the context and purpose of the boundary being

tested.

Actual behavior vs. described behavior: The described

boundaries may not align with the actual behavior of the

product until thorough testing is conducted. There may be

additional boundary values and behaviors that emerge during

testing.

Considering other factors: Look beyond the given description

and consider other factors that could impact the behavior of

the field. Explore explicit and unstated conditions related

to the field and its purpose.

Interacting and interdependent elements: Recognize that the

field is part of a larger system with interacting and

interdependent elements. Explore how these elements may

influence the presentation and processing of boundaries.

Implementation details: Consider how the input field is

implemented (e.g., drop-down box, text box, combo box).

Different implementations may introduce additional boundary

conditions or reveal peculiar behaviors or error handling.

Numeric precision and rounding: Pay attention to how the

system handles numeric precision, rounding, and pattern

matching. Consider scenarios where the system may truncate or

handle unexpected input.

Historical and future boundaries: Take into account

historical or future boundaries that may impact the behavior

or significance of specific values. Examples include the Y2K

boundary in 1999–2000 and the upcoming Epochalypse in the

early months of 2038.

Input filtering and backend validation: Assess how input

filtering and constraints are implemented, both in the

frontend and backend. Determine if the system handles data

validation and error checking consistently and effectively.

Error checking and exception handling: Explore how error

checking and exception handling are performed. Identify

potential vulnerabilities when handling input up to certain

values or lengths or when the system becomes overwhelmed.

These considerations provide insights into Michael Bolton’s

critical thinking approach and the nuances he suggests when

evaluating risks and generating test ideas. His perspective

encourages testers to go beyond simplistic approaches and

thoroughly investigate product behavior and potential risks.

Rating: Poor+ (opacity, negligence, incuriosity,
incorrectness, redundancy, non-responsiveness)

The prompt wasn't a question. In fact, if you read it

carefully, it is nonsensical. It refers to a testing question

and then doesn’t specify any testing question. ChatGPT

should not have provided any answer, but rather should

have asked clarifying questions. However, our

experiments show that ChatGPT almost never responds to

a prompt with questions unless the prompt itself invites it

to ask questions (negligence, incuriosity).

Jason has stated that this is the raw ChatGPT transcript,

but Michael’s article is not here in the prompt. So, we

don’t know how or whether Jason provided Michael’s

article to ChatGPT. The article can be found here:

https://developsense.com/blog/2023/07/boundaries-

unbounded

Given the confused prompt, the bot has apparently

defaulted to summarizing the article.

Essentially every interesting word is repeated or

reformulated ("implementation" vs. "implemented". You

could call it summarizing or plagiarism, but it's simplistic

and boring. The order of the points is pretty much exactly

the same as in the original. It’s also not much of a

summary; 388 words vs. 895 words — around 45%.

Partly because of the prompt, perhaps, ChatGPT didn't

relate the article to the poll question about boundary

testing. No new insights are provided.

I rate this as a poor+ answer because I don’t see the value

in this response. It doesn’t help us solve any problem or

save time doing anything important. If it is a

demonstration of how ChatGPT “understands” articles,

it’s not a very compelling one.

(25) Any critiques of

Michael Bolton’s article?

While Michael Bolton’s article provides valuable insights and

challenges simplistic approaches, there are a few potential

critiques to consider:

Lack of context: The article discusses the concept of

boundaries in testing but does not explicitly address the

specific problem or domain under consideration. Providing

more context about the problem statement could have helped

readers understand the practical implications and relevance

of his points.

Limited focus on specific test cases: The article does not

provide concrete examples of specific test cases that can be

derived from the points raised. Although it encourages

critical thinking, some readers might have found it helpful

to see more practical examples of test cases or scenarios.

Lack of balance between theory and practice: While the

article highlights the limitations of simplistic formulas, it

may not fully acknowledge the value of established testing

techniques and practices. Balancing theoretical perspectives

with practical guidance could have strengthened the article’s

applicability.

Absence of alternatives: While the article critiques the

given multiple-choice answers, it does not provide

alternative boundary values or testing approaches. Offering

some alternative suggestions or examples could have enhanced

the practicality of the article’s message.

Limited discussion on risk analysis: The article touches on

risk analysis but does not delve deeply into the systematic

identification and prioritization of risks. Readers seeking

more guidance on risk analysis and mitigation might have

desired additional insights.

It’s important to note that these critiques are meant to

provide constructive feedback and promote further discussion.

Michael Bolton is a respected figure in the testing

community, and his perspectives on testing are valuable

contributions to the field.

Rating: Poor+ (opacity, incorrectness,
blindness)

We don’t know anything specific about how ChatGPT

arrives at its critique. Since we don’t know its process, we

also can’t make any strong inferences about things it

didn’t complain about. Since it can’t read diagrams, we

must presume it ignores the pictures in Michael’s article.

We can say this: the critique is wrong. ChatGPT cites five

points— each of which is factually incorrect.

1. The post exactly identifies the context: it’s the

silly poll on LinkedIn. Indeed, ChatGPT’s

“critique” restates what Michael himself

complained about in his article.

2. The post does provide examples of test cases or

scenarios. One could always ask for more, I

suppose, but there are already plenty.

3. The post does provide practical guidance. The

last two paragraphs of Michael’s article constitute

a practical call to action. Additionally, there is

implied practical advice: don’t put dopey polls on

LinkedIn.

4. Alternative boundary values are provided all the

way through the post. Alternative testing

approaches are not within the scope of the article.

5. Product risk is discussed in appropriate depth for

an article intended to illustrate the silliness of the

original poll question. As for risk mitigation, that

is outside the scope of testing.

(26) Revise the

article with your

critiques

addressed/fixed

Title: Enhancing Testing Perspectives: Exploring Boundaries and Product

Risks

Introduction: Testing and risk analysis are essential for uncovering product

and business risks. However, simplistic formulas can limit our ability to

thoroughly investigate and reveal these risks. In this article, we delve

into the concept of boundaries and their implications for testing, with a

focus on practical application and risk analysis.

Understanding Boundaries: Boundaries serve as classification or filtering

mechanisms, and they can take various forms. They may represent dividing

points, principles for categorization, viewports presenting subsets of

larger sets, execution time limits, or points blocking certain processes.

Recognizing this broad spectrum of boundary definitions helps us uncover

different facets of product behavior and mitigate risks more effectively.

Aligning Descriptions with Actual Behavior: While descriptions provide a

starting point, true understanding of boundary values comes from testing and

observing the actual behavior of the product. Testing uncovers behavior

patterns and classifications that may not have been initially evident. It

also helps us identify unanticipated behaviors and boundary conditions,

contributing to a more comprehensive risk assessment.

Considerations Beyond the Description: To enhance our testing approach, we

should look beyond the given description. Consider other factors that

influence the field and its behavior. Are there additional explicit or

unstated conditions that affect the boundaries? How does the field interact

with other elements within the system? By exploring these factors, we can

ensure a more holistic understanding of the product’s behavior and potential

risks.

Implementation Details and Edge Cases: Implementation details play a crucial

role in testing boundaries. Consider how the input field is implemented —

whether as a drop-down box, text box, or combo box. Each implementation

introduces its own set of considerations and potential edge cases. For

example, constraints on input length, handling of special characters, and

support for international characters or date formats can all impact boundary

testing.

Dynamic Boundaries and Contextual Significance: Boundaries are not static;

they evolve based on time, context, and requirements. Consider scenarios

where historical or future boundaries come into play. Does the significance

of a specific value change over time? By staying aware of contextual

factors, such as legal requirements or evolving industry standards, we can

identify and address risks associated with dynamic boundaries.

Error Handling and Exception Conditions: Robust error handling and exception

conditions are crucial aspects of boundary testing. Consider how the system

responds to various boundary values and potential exceptions. Does the

system gracefully handle unexpected inputs, overflow conditions, or

limitations on data types? By thoroughly exploring error handling and

exception conditions, we can enhance the product’s reliability and user

experience.

Conclusion: By embracing a more nuanced perspective on boundaries and their

impact on testing, we can better reveal product risks and ensure high-

quality software. Going beyond simplistic formulas, we can adopt a

comprehensive risk analysis approach, considering implementation details,

contextual significance, and dynamic boundaries. Through thorough testing,

we improve our ability to assess and mitigate risks, contributing to the

overall success of the product and the satisfaction of its users.

Rating: Poor (opacity, Non-
responsiveness, forgetfulness,
incongruence, vacuousness)

This article is a travesty. It doesn’t address the

issues that it complained about in the original

article. For instance, there is:

- no systematic explanation of risk

analysis

- no specific test cases given

- specifics that were in the original

article have been removed

- context has been tossed away

- entire rhetorical thrust has been

gutted

- authorial voice has been neutered

- word count has been reduced by

almost half without improving on any

of the elements that ChatGPT had

complained about

"By thoroughly exploring error handling and

exception conditions, we can enhance the

product’s reliability and user experience." No,

no, no. Testing does not improve quality.

(27) What limitations do

you see in the rapid

software (RST) process

related to the testing

example above.

The Rapid Software Testing (RST) process, as described in the

context of the testing example above, focuses on quick and

efficient testing to reveal risks. While RST has its

advantages, it also has some limitations to consider:

Limited documentation: RST emphasizes quick testing cycles,

which may result in limited documentation. While this

promotes agility, it can make it challenging to maintain

comprehensive records of test cases, results, and overall

test coverage. This lack of documentation may hinder

traceability and make it difficult to reproduce specific

scenarios or track testing progress over time.

Reliance on tester expertise: RST heavily relies on the

expertise and experience of individual testers. While skilled

testers can provide valuable insights and conduct effective

testing, the process may not be as scalable or consistent

when multiple testers with varying levels of expertise are

involved. The quality and thoroughness of testing may depend

on the skills and knowledge of the testers involved.

Limited focus on test planning: RST prioritizes rapid testing

and risk assessment, often with less emphasis on

comprehensive test planning. While this flexibility allows

for agility, it may lead to a lack of structured test

planning and a potential oversight of critical scenarios or

test coverage gaps. Without sufficient upfront planning,

there is a risk of missing important test cases or not

allocating testing efforts effectively.

Limited scalability for larger projects: RST may face

challenges when applied to large-scale projects that require

extensive testing efforts. The rapid and exploratory nature

of RST may not be well-suited for complex projects with

numerous interconnected components or extensive regression

testing needs. In such cases, a more structured and

systematic approach to testing may be necessary to ensure

sufficient coverage and mitigate risks effectively.

Lack of formalized processes: RST focuses on adaptability and

flexibility, which can be advantageous for quick feedback and

rapid iteration. However, the absence of formalized processes

and predefined test techniques may result in inconsistency or

variation in testing approaches across different teams or

projects. This could make it difficult to establish

standardization, collaboration, and knowledge sharing within

an organization.

While RST can be effective for certain projects and contexts,

it is essential to consider these limitations and evaluate

whether they align with the specific requirements,

complexity, and scale of the project at hand. Supplementing

RST with other testing methodologies or incorporating more

structured approaches may be necessary in scenarios where

these limitations are significant concerns.

Rating: Poor (opacity, incorrectness)

This is an ignorance-based critique of Rapid Software

Testing. It’s largely false, and it may also be based on

training data that includes outright defamatory text written

by commercial rivals of Michael and I who have an

interest in misstating the premises, goals, and substance of

the RST methodology.

I’m not going to do a point-by-point rebuttal of

ChatGPT’s screed. But it is interesting to see that it made

a few statements that were right, even though its analysis

of those facts was deficient:

- Rapid Software Testing does rely on skilled

testers. It is a humanist methodology. You can

say that this “doesn’t scale” or it “isn’t

consistent” from tester to tester—except that

same criticism also goes for every other worker

involved in software development. Since there is

no alternative to skilled workers if you want

excellent work in the technical realm, this is not a

meaningful or coherent criticism.

- Rapid Software Testing does emphasize

exploratory processes, but only because there is

no viable alternative to them if you want to do

good work. Calling for more “structure” does not

solve the problem; and exploration in no way

opposes “structure.” What it opposes is bullying.

Some people use “structure” as a euphemism for

bullying practitioners into doing bad work.

Rapid Software Testing is a comprehensive testing

methodology that adapts to any context. We have applied

it to all kinds of projects. No other test methodology is

needed. It is possible to critique RST, fairly and

insightfully, but ChatGPT has not done so, here.

(28) Why do you think the

authors of RST chose these

trade-offs?

The authors of Rapid Software Testing (RST) likely made

deliberate trade-offs based on their testing philosophy and

the goals they aimed to achieve. Here are some reasons why

these trade-offs may have been chosen:

Emphasis on agility and responsiveness: RST prioritizes

adaptability and quick feedback. By focusing on rapid testing

cycles, it enables testers to respond promptly to changes in

requirements, identify risks early, and provide valuable

feedback to stakeholders. This agility allows for faster

iterations and facilitates a more iterative and collaborative

development process.

Leveraging tester expertise and intuition: RST values the

skills, knowledge, and intuition of experienced testers. By

relying on their expertise, the process encourages

exploration, creativity, and critical thinking. Testers are

empowered to use their judgment to identify and prioritize

risks, select appropriate test techniques, and uncover issues

that might not be easily identified through scripted tests

alone.

Flexibility in test planning: RST promotes flexibility in

test planning, allowing testers to adapt their approach based

on emerging risks and changing requirements. This enables

them to focus efforts on areas of highest risk and

importance, rather than being strictly bound by predefined

test plans. The emphasis is on critical thinking and

continuous learning, enabling testers to adjust their

strategies as they gain insights during testing.

Lightweight documentation: RST values concise documentation

that captures essential information without being overly

burdensome. This approach supports the rapid pace of testing

and reduces administrative overhead. It allows testers to

focus on active testing, exploration, and risk assessment

rather than spending excessive time on detailed

documentation.

Encouraging collaboration and knowledge sharing: RST

emphasizes collaboration among testers, developers, and

stakeholders. By promoting open communication and knowledge

sharing, it fosters a shared understanding of risks,

encourages early and frequent feedback, and facilitates

learning from each other’s experiences. This collaborative

approach helps build a collective testing mindset and

encourages a culture of continuous improvement.

Overall, the authors of RST made these trade-offs to optimize

the testing process for speed, adaptability, and

effectiveness. By leveraging tester expertise, promoting

flexibility, and emphasizing collaboration, RST aims to

uncover risks efficiently while maintaining a focus on

delivering value to stakeholders in an iterative and

responsive manner.

Rating: Poor (opacity, negligence,
incorrectness)

Again, this is an ignorance-based analysis. It incorrectly

states the design premises and principles of RST.

ChatGPT should have refused to answer the question.

I suspect if we fed all our blog posts and training materials

into ChatGPT, it would give better answers to these

questions—because Michael and I explicitly address these

matters in our writings.

ChatGPT has not done its homework, in this case.

For instance, yes, RST leverages tester expertise and

intuition. But there is a specific and compelling reason for

that, which must be mentioned in any educated discussion

of this topic. We focus on expertise because there is no

alternative to expertise. Testing cannot be reduced to an

algorithm. Testing is not an encodable process. Testing

requires social competence, which is largely somatic and

collective tacit knowledge.

What a lot of people, including Jason Arbon, call testing is

what we call output checking. Checking can be reduced to

an algorithm, but checking is only a small subset of what

software testers do for a living.

Instead of discussing these vital issues, ChatGPT leaves

the impression that we focus on tester skills just because

we really really like people.

(29) In the context of

this testing example, what

things should someone who

follows the RST

methodology of testing add

to the approach to fill in

these gaps?

To fill in the gaps and enhance the approach in the context

of the testing example using Rapid Software Testing (RST),

here are some considerations to incorporate into the testing

process:

Structured exploratory testing sessions: While RST promotes

exploration and expert intuition, introducing structured

exploratory testing sessions can help provide a more

systematic approach. Define specific objectives, charters,

and test coverage areas to ensure comprehensive exploration

while still leveraging tester expertise.

Test charters and session notes: Document test charters and

session notes during exploratory testing sessions. This helps

capture important information, observations, and potential

risks encountered during testing. These records can be used

for later reference, sharing insights with stakeholders, and

aiding in knowledge transfer among testers.

Risk-based test planning: While RST allows flexibility in

test planning, consider incorporating risk-based test

planning techniques. Identify critical functionalities, high-

risk areas, and potential failure points based on the

understanding of the system and its stakeholders. This helps

ensure that testing efforts are focused on areas with the

highest potential impact and risk.

Test coverage analysis: Although RST emphasizes adaptability,

periodically analyze test coverage to identify any gaps or

areas that may require additional attention. This analysis

helps ensure that the essential aspects of the system have

been adequately tested and that key risks have been

addressed.

Collaboration through debriefs and sessions: Facilitate

regular debrief sessions with the testing team, developers,

and other stakeholders to share insights, lessons learned,

and potential risks uncovered during testing. These sessions

encourage collaboration, foster a culture of learning, and

promote knowledge sharing among team members.

Regression testing strategy: Consider incorporating a

structured regression testing strategy to address the

potential limitations of RST in handling large-scale

projects. Determine critical functionality and areas prone to

regression issues, and create a suite of regression test

cases to ensure proper coverage and identification of

potential regressions.

Documentation balance: While RST favors lightweight

documentation, strive for a balance that captures essential

information. Ensure that important test artifacts, such as

test charters, session notes, and risk assessments, are

appropriately documented and accessible for future

Rating: Poor (negligence, opacity, incuriosity)

Neither Michael nor I can fathom what this prompt

means.

- “This testing example” may mean the original

poll question about boundary testing, or

something later in the dialog.

- “add to the approach” may mean the RST

approach or the “traditional” approach.

- “these gaps” may refer to the tradeoffs listed in

the previous response, or the criticisms listed in

the response before that one, or the gaps in the

original poll question.

So, we don’t know what ChatGPT is actually replying to.

It hasn’t read back its interpretation of the prompt.

Strangely, it suggests that RST can be improved by

introducing “structured exploratory testing sessions.”

This is weird because I invented Session-Based Test

Management (which introduced the idea of exploratory

test sessions as a concept to the industry, in the year

2000) and it is already a part of RST.

None of the items mentioned by ChatGPT are outside of

RST.

(30) Leveraging the

techniques of james

whittakers

‘exploratory

software testing’

book, what would

you suggest would

be good ‘tours’ and

hints for

exploratory testing

this boundary test

example?

Leveraging the techniques from James Whittaker’s book “Exploratory Software

Testing,” here are some suggested “tours” and hints for conducting

exploratory testing on the boundary test example:

Boundary Focus Tour:

Start by focusing on the boundary values themselves and explore how the

system handles inputs at the exact boundaries.

Test the behavior of the text box when the values of x and y are set

precisely to the minimum and maximum boundaries.

Observe how the system responds and validate if it behaves as expected in

terms of acceptance or rejection of the inputs.

Equivalence Tour:

Partition the valid inputs into equivalence classes based on their

characteristics or expected behavior.

Select representative inputs from each equivalence class to test the

system’s response.

For example, choose inputs near the boundaries, as well as some typical

values within the valid range, and observe how the system handles them.

Error Handling Tour:

Focus on error conditions and inputs that fall outside the valid boundaries.

Test how the system handles invalid inputs, such as values below the

minimum, above the maximum, or non-numeric inputs.

Explore any error messages or notifications provided by the system and

ensure they are appropriate and informative.

Stress Testing Tour:

Push the boundaries of the system by subjecting it to stress conditions.

Test the behavior when large numbers or long strings are entered in the text

box.

Observe how the system handles such inputs in terms of performance, response

time, and error handling.

Combination Tour:

Explore combinations of boundary values and other factors that may influence

the system’s behavior.

Test different combinations of x and y values, taking into account other

variables or conditions that might impact the outcome.

For example, test how the system handles the interaction between x and y

when they approach the boundaries together or when one is at its boundary

while the other is not.

Hints for Exploratory Testing:

Document your observations, actions taken, and any anomalies or unexpected

behaviors encountered during testing.

Utilize exploratory testing charters to define your testing goals and

provide a sense of direction during exploration.

Follow your intuition and curiosity while testing, allowing for

serendipitous discoveries and unexpected paths.

Use mind mapping or brainstorming techniques to generate and organize test

ideas.

Collaborate with other testers, developers, or stakeholders to gain

different perspectives and insights.

Prioritize risks and focus your exploratory testing efforts on areas that

have the highest potential impact or uncertainty.

By applying these tours and hints from “Exploratory Software Testing,” you

can conduct more thorough and systematic exploration of the boundary test

example, uncovering potential issues and gaining valuable insights into the

system’s behavior.

Rating: Poor (hallucination, negligence, opacity,
non-responsiveness, vacuousness)

This answer is non-responsive, in that it does not refer to

the boundary test example; nor does it seem to refer to

Whittaker's book. It simply spits out some general (and

vacuous) notions about boundary testing.

- It's not clear (opaque) to what degree ChatGPT's

notion of "Boundary Focus Tour" is based on

Whittaker's book. It's hard to tell at least in part

because Whittaker's book itself goes into very little

detail about boundaries. The one example from

Whittaker’s section on "Boundary Tour" (not

"Boundary Focus Tour") that might relate to the

current exercise is "filling a text box with its

maximum number of characters or null".

- Whittaker's book doesn't mention "Equivalence

Tour" or "Error Handling Tour"; these are

hallucinations.

- "Stress Testing Tour" is similarly a hallucination

with respect to Whittaker's book. There is no

"Stress Testing Tour" in the book. The book itself

contains the word "stress" only three times, none

of which relate to what ChatGPT is saying here.

- "Subjecting [the system] to stress conditions" is

pretty vague.

- "Combination Tour" is a hallucination.

An expert tester might also voice doubt about the

applicability of touring (which is about surveying an

application) to the task of answering the original prompt,

which is of far narrower scope than would warrant a tour.

